

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

May 2016

Problem:

In a class consisting of 23 students each pair of students watched a movie. A set of movies watched by a student is its *film collection*. Given that no student watched any movie more than once, what is the minimal possible number of different film collections in the class.

Solution: The answer: The minimal number of different film collections k is equal to 3.

Let us reformulate the problem in terms of graph theory. Let the edges of a complete graph on 23 vertices be properly colored (any two edges having common vertex have distinct colors). For each vertex define a collection of colors of all edges adjacent to this vertex. What is the minimal number of distinct collections?

If k = 1, then each vertex is adjacent to an edge colored into some particular color, say c_0 . Then 23 vertices will be partitioned into pairs connected by edges colored c_0 , a contradiction. If k = 2, suppose that the vertices v_1, \ldots, v_l have the first collection and the vertices u_1, \ldots, u_{23-l} have the second collection. Let the vertices v_1 and u_1 are connected by an edge colored c_0 . Then each vertex is adjacent to an edge colored c_0 and again we come to the contradiction above. Now we construct an example for k = 3. Let us divide all vertices into three groups: $v_0, \ldots, v_{10}, u_0, \ldots, u_{10}$ and w. For each $0 \le i \le 10$ and $0 \le j \le 10$

the edge connecting vertices v_i and v_j we color into $c_{(i+j)mod(11)}$ the edge connecting v_i and w we color into $c_{(i+i)mod(11)}$ the edge connecting vertices u_i and u_j we color into $d_{(i+j)mod(11)}$ the edge connecting u_i and w we color into $d_{(i+i)mod(11)}$ the edge connecting v_i and u_j we color into $f_{(i+j)mod(11)}$.

Thus, by using of 33 colors $c_0, \ldots, c_{10}, d_0, \ldots, d_{10}, f_0, \ldots, f_{10}$ we have properly colored the complete graph on 23 vertices and there are only 3 different collections: each vertex v_i has the collection $\{c_0, \ldots, c_{10}, f_0, \ldots, f_{10}\}$, each vertex u_i has the collection $\{d_0, \ldots, d_{10}, f_0, \ldots, f_{10}\}$ and the vertex w has a collection $\{c_0, \ldots, c_{10}, d_0, \ldots, c_{10}, d_0, \ldots, d_{10}\}$. Done.