

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

June 2019

Problem:

Let P(x) be a non-constant polynomial with real coefficients such that all of its roots are real numbers. Suppose that there exists a polynomial Q(x) with real coefficients such that

$$(P(x))^2 = P(Q(x))$$

for all real numbers x. Determine the maximal possible number of distinct roots of P(x).

Solution: Answer: 1.

Let $P(x) = A(x - r_1)^{d_1} \cdots (x - r_k)^{d_k}$ where $r_1 < \cdots < r_k$. It is easy to see that Q(x) has degree 2 and hence $Q(x) = ax^2 + bx + c$ for some real numbers a, b and c. Then the given equality can be written as

$$A^{2} \prod_{i=1}^{k} (x - r_{i})^{2d_{i}} = A \prod_{i=1}^{k} (ax^{2} + bx + c - r_{i})^{d_{i}}.$$

Therefore, for each *i* the roots of $ax^2 + bx + c - r_i$ are r_s and r_t for some *s* and *t*. On the other hand, the sum of the roots are -b/a for every *i*. Thus, all the roots of $(P(x))^2$ can be paired in a way that sum of the elements in each pair is the same. Let an r_1 be paired with r_s and an r_k be paired with r_t . Since $r_1 \leq r_t$, $r_s \leq r_k$ and $r_1 + r_s = r_k + r_t$, we see that $r_s = r_k$ and $r_t = r_1$. In other words, every r_1 has to be paired with an r_k and every r_k has to be matched with an r_1 . Therefore, we obtain that $d_1 = d_k$. By induction it is easy to prove that $d_i = d_{k+1-i}$ for every *i* and all pairs are of the form $\{r_j, r_{k+1-j}\}$. Consequently, for every *m* we have that $(c-r_m)/a$ is equal to r_jr_{k+1-j} for some *j*. However, the numbers of the form r_jr_{k+1-j} can attain at most $\lfloor \frac{k+1}{2} \rfloor$ distinct values and hence we get $k \leq \lfloor \frac{k+1}{2} \rfloor$ which implies $k \leq 1$.

Example: If P(x) = x and $Q(x) = x^2$ then $P(x)^2 = P(Q(x)) = x^2$ and P(x) has only one distinct root.