

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

January 2025

Problem:

Find all prime numbers p for which the number

$$3^p + 4^p + 5^p + 9^p - 98$$

has at most 6 positive divisors.

Solution: Answer: p = 2, 3, 5.

Let $f(p) = 3^p + 4^p + 5^p + 9^p - 98$. The primes 2,3,5 satisfy the problem conditions: $f(2) = 3 \cdot 11, f(3) = 7 \cdot 11^2, f(5) = 7 \cdot 9049$.

Let p > 5. Since 7 divides $3^p + 4^p$, $5^p + 9^p$ and 98 we get 7 | f(p). Now since

$p \equiv 1$	$\pmod{10}$	\implies	$f(p) \equiv 3 + 4 + 5 + 9 + 1 \equiv 0$	$(mod \ 11),$
$p \equiv 3$	$\pmod{10}$	\implies	$f(p) \equiv 5 + 9 + 4 + 3 + 1 \equiv 0$	$(mod \ 11),$
$p \equiv 7$	$\pmod{10}$	\implies	$f(p) \equiv 9 + 5 + 3 + 4 + 1 \equiv 0$	$(mod \ 11),$
$p \equiv 9$	$\pmod{10}$	\implies	$f(p) \equiv 4 + 3 + 9 + 5 + 1 \equiv 0$	$\pmod{11}$

we get that 11 | f(p). Since f(p) has at most 6 positive divisors the only prime divisors of f(p) are 7 and 11. On the other hand, for p > 5 we have $f(p) > 7 \cdot 11^2 > 7^2 \cdot 11 > 7 \cdot 11$. Therefore, there is no p > 5 satisfying conditions.