

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

May 2025

Problem:

Let n be a positive integer and S_n be the set of all positive integers not exceeding n and relatively prime to n. Let f(n) be the smallest positive integer for which the set S_n can be partitioned into f(n) disjoint subsets, such that each of these subsets is an arithmetic progression. Show that there are infinitely many pairs (a, b) such that a, b > 2025, a|b and $f(a) \not|f(b)$.

Solution:

Let us show that each pair (a, b) = (2p, 4p), where p > 1012 is a prime number satisfies problem conditions.

The set S_{2p} consists of all odd integers from the interval [1, 2p - 1] except p. Obviously f(2p) > 1. Then since

$$S_{2p} = \{1, 3, \dots, p-2\} \cup \{p+2, p+4, \dots, 2p-1\}$$

we get f(2p) = 2.

The set S_{4p} consists of all odd integers from the interval [1, 4p - 1] except p and 3p. Obviously f(4p) > 2. Then since

$$S_{2p} = \{1, 3, \dots, p-2\} \cup \{p+2, p+4, \dots, 3p-2\} \cup \{3p+2, p+4, \dots, 4p-1\}$$

we get $f(4p) = 3$.

Since $2p \mid 4p$ and $2 \not\mid 3$ we are done.